Polydactyly and ectopic ZPA formation in Alx-4 mutant mice.

نویسندگان

  • S Qu
  • K D Niswender
  • Q Ji
  • R van der Meer
  • D Keeney
  • M A Magnuson
  • R Wisdom
چکیده

Correct development of the limb is dependent on coordination between three distinct signaling centers. Recently, fibroblast growth factor-4 has been identified as a crucial determinant of AER function, which directs limb bud outgrowth, and Sonic hedgehog has been identified as a signaling molecule that mediates ZPA function, which specifies anterior-posterior patterning in the developing limb bud. In addition, Shh and FGF-4 reciprocally reinforce each other's expression via a positive feedback loop, providing a molecular basis for the coordination of limb bud outgrowth and anterior-posterior patterning. The mechanisms by which these signaling centers come to occupy their normal positions in the posterior limb bud during development are not understood. Here we identify and characterize Alx-4, a gene that encodes a paired-type homeodomain protein. Alx-4 is expressed in several populations of mesenchymal cells, including mesenchymal cells in the anterior limb bud, and mice homozygous for targeted disruption of the Alx-4 gene have multiple abnormalities, including preaxial polydactyly. The polydactyly is associated with the formation of an ectopic anterior ZPA, as indicated by anterior expression of Sonic hedgehog, HoxD13 and fibroblast growth factor-4. The expression of other candidate regulators of anterior-posterior positional information in the limb bud, including HoxB8 and Gli3, is not altered in Alx-4 mutant embryos. By chromosomal mapping experiments, Alx-4 is tightly linked to Strong's luxoid, a polydactylous mouse mutant. The results identify Alx-4 as a determinant of anterior-posterior positional identity in the limb and a component of a regulatory program that restricts ZPA formation to the posterior limb bud mesenchyme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutations in mouse Aristaless-like4 cause Strong's luxoid polydactyly.

Mutations that affect vertebrate limb development provide insight into pattern formation, evolutionary biology and human birth defects. Patterning of the limb axes depends on several interacting signaling centers; one of these, the zone of polarizing activity (ZPA), comprises a group of mesenchymal cells along the posterior aspect of the limb bud that express sonic hedgehog (Shh) and plays a ke...

متن کامل

A duplicated zone of polarizing activity in polydactylous mouse mutants.

The positional signaling along the anteroposterior axis of the developing vertebrate limb is provided by the zone of polarizing activity (ZPA) located at the posterior margin. Recently, it was established that the Sonic hedgehog (Shh) mediates ZPA activity. Here we report that a new mouse mutant, Recombination induced mutant 4 (Rim4), and two old mutants, Hemimelic extra toes (Hx) and Extra toe...

متن کامل

Opposing Functions of the ETS Factor Family Define Shh Spatial Expression in Limb Buds and Underlie Polydactyly

Sonic hedgehog (Shh) expression during limb development is crucial for specifying the identity and number of digits. The spatial pattern of Shh expression is restricted to a region called the zone of polarizing activity (ZPA), and this expression is controlled from a long distance by the cis-regulator ZRS. Here, members of two groups of ETS transcription factors are shown to act directly at the...

متن کامل

The role of Alx-4 in the establishment of anteroposterior polarity during vertebrate limb development.

We have determined that Strong's Luxoid (lstJ) [corrected] mice have a 16 bp deletion in the homeobox region of the Alx-4 gene. This deletion, which leads to a frame shift and a truncation of the Alx-4 protein, could cause the polydactyly phenotype observed in lstJ [corrected] mice. We have cloned the chick homologue of Alx-4 and investigated its expression during limb outgrowth. Chick Alx-4 di...

متن کامل

Evidence for genetic control of Sonic hedgehog by Gli3 in mouse limb development

Sonic hedgehog (Shh) expression in the developing limb is associated with the zone of polarising activity (ZPA), and both are restricted to the posterior part of the limb bud. We show that the expression patterns of Shh and Gli3, a member of the Gli-family believed to function in transcriptional control, appear to be mutually exclusive in limb buds of mouse embryos. In the polydactyly mouse mut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 124 20  شماره 

صفحات  -

تاریخ انتشار 1997